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APPENDIX 2 
Crystal-chemical model of Pb atom distributed on the 

sphere surface 

The distance between the Pb position (0,0,0) and 
the O atoms in the structure of lead magneso- 
niobate, 2.857 A, seems to be rather long in compari- 
son with the average Pb-O distance (about 2.814 A) 
in crystal structures containing 12-coordinated 
Pb atoms. However, the difference is not so 
dramatic as to cause strong disorder of the Pb 
atom, because in the structures of Rb2PbCu(NO2)6 
(Takagi, Joesten & Lenhert, 1976) and 
Cs2PbCu(NO2)6 (Klein & Reinen, 1978) these dis- 
tances are 2.843 and 2.847 A, where the Pb atoms 
occupy fixed positions. 

The fact of strong disorder of the Pb atom in 
PMN can be explained in terms of a bond-valence 
model. Let us assume that the Mg and Nb atoms are 
isomorphously distributed in the crystal lattice. 
Then, different kinds of O atoms exist: O atoms 
connected to two Nb atoms, to two Mg atoms and to 
one Nb and one Mg atom. If the second and third 
coordination spheres are taken into account, the 
number of different kinds may be increased. So the 
bond order of Pb-O will range from 1/12 to 1/3 of a 
valence unit depending on the local surroundings. 
The vector sum of the Pb-O interactions will differ 
from zero and will have a random direction, causing 
the shift of the Pb atom from the centre of the 
polyhedron. 
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Abstract 

An exact Fourier representation of the probability 
for the Y~I relationship is derived, which takes into 
account the presence of noncrystallographic centro- 
symmetry in the asymmetic unit of the space group 
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P1. Illustrative examples show that'the main effect of 
noncrystallographic symmetry is to decrease the 
probability that E2h is positive, as compared to the 
corresponding probability in the absence of such 
symmetry. The effect appears to be more pro- 
nounced in the equal-atom case than it is for a 
structure having a heterogeneous atomic com- 
position. 
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606 EFFECTS OF NONCRYSTALLOGRAPHIC SYMMETRY ON Y l RELATIONSHIP. I 

Introduction 

One of the earliest and simplest relationships in 
direct methods of phase determination is the expres- 
sion for the probability that the sign of the 
normalized structure factor E2h is positive condi- 
tioned on the magnitudes IE2hl and lEvi. This expres- 
sion is a probabilistic version of the Y~ relationship 
(e.g. Giacovazzo, 1980) and is usually referred to as 
the Y.1 formula. This relationship was first defined by 
Hauptman & Karle in their Monograph (Hauptman 
& Karle, 1953). Early studies of this relationship 
yielded approximations based on the central limit 
theorem (Vand & Pepinsky, 1953; Cochran & Woolf- 
son, 1955), which are still implemented in most 
software packages for crystal structure determina- 
tion. Several higher approximations for Z I have been 
proposed during the following three decades [for 
references, see Giacovazzo (1980)], and an exact 
representation of the expression for this probability 
was derived by Shmueli & Weiss (1985a) for the 
space group P1 in the form of a Fourier series. 
However, all these studies only took atomic com- 
position and crystallographic symmetry into account; 
no additional structural or physical effects were con- 
sidered. 

It occurred to us that since noncrystallographic 
symmetry strongly affects the probability density 
function (p.d.f.) of the magnitude of the structure 
factor (Rogers & Wilson, 1953; Shmueli, Weiss & 
Kiefer, 1985), it is also likely to affect sign and phase 
relationships. Our recent work on Fourier represen- 
tations of univariate and multivariate structure- 
factor statistics allowed us to test this hypothesis 
quantitatively and we decided to derive and compute 
an exact expression for the Y.~ relationship. Such an 
expression should be of interest in connection with 
the study of effects of noncrystallographic symmetry 
on direct methods of phase determination. Our 
derivation is presented in the next section and the 
paper concludes with two illustrative examples along 
with their interpretation. 

Derivation 

We derive an expression for the probability that the 
sign of the normalized structure factor E2h is pos- 
itive, given the magnitudes IEh[ and IE2h, together 
with a noncrystallographic center of symmetry in the 
asymmetric unit. The derivation is given for the 
space group P1. 

We proceed along the lines of the derivation of the 
exact Y.I formula by Shmueli & Weiss (1985a), with 
modifications related to the functional form of the 
structure factor. We assume that: 

(1) The position vectors, rj, of all the atoms and 
that of the noncrystallographic center, d, have 

rationally independent components, from which it 
follows that the phase factors 2rrhrrj and 2rrhrd, 
each taken modulo 2rr, are uniformly distributed in 
the interval ( - r r ,  rr). 

(2) Contributions of different atoms within the 
asymmetric subunit to the structure factor are statis- 
tically independent. 

(3) Effects of anomalous dispersion are not taken 
into account. 

Assumption (1) implies that all the atoms, as well 
as the noncrystallographic center, are located in gen- 
eral positions of the space group. 

Following Shmueli & Weiss (1985a), the joint 
p.d.f, of the two structure factors involved is given 
by the two-dimensional Fourier series 

p(Eh,Ezh) = (a2/4) X Z Cst exp [ -  iTra(SEh + tEzh)], 
s t 

(1) 
where the indices s and t range from - oo to ~ and 
a is the reciprocal of the maximum allowable value 
of [E[. In order to obtain the coefficients, C,,, we use 
the result obtained by Shmueli, Weiss & Kiefer 
(1985) for the normalized structure factor in the 
present bicentric arrangement. This structure factor 
is given by 

N/4  

Eh = 4COS O Z njcos (0j-- tO), (2) 
j = l  

where 0j = 2rrhrrj, 0 = 2rrhrd, nj is the normalized 
scattering factor of the jth atom and N is the number 
of atoms in the unit cell. The characteristic function 
corresponding to the p.d.f, given by (1) is therefore 
defined by 

C(tOl,W2) = (exp [i(tOlEh + to2E2h)]), (3) 

/ N /4  

C(gOl,O)2)-" _ qj~__leXp{4inj[w, cos tO cos (0j - O) 

to2 cos 20 cos (20j - 20)]}). (4) + 

The averaging in (4) is first carried out with respect 
to the 0/s and finally with respect to 0. If we 
introduce the abbreviations Xjl = 4to~njcos(O) and 
xj2 "-4tOznjCos (20) and recall that 0j is uniformly 
distributed in (-Tr,rr), the average in (4) can be 
written as 

C(t°l't°2) = (1/27r) -~- t J=, "~ / ~I4[ (1/27r) 

x f exp{i[xjlcOS(O- 0) 

+ xj2 cos (20 - 20)]}d0 dO. (5) 

The multiple integral indicated in (5) can, at least in 
principle, be evaluated numerically. However, it is 
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also possible to reduce the expression for C(001,w2) t o  

a single integral by making use of the identity 
oo 

exp (iu cos fl) = E imJm(u) exp (imfl) (6) 
m = - o o  

(e.g. Gradshteyn & Ryzhik, 1980; entry 8.511-4). By 
substituting this expansion for the exponentials in 
(5), we obtain 

C(~1,~2) 
rr N/4 

= ( 1 / 2 7 7 " )  f FI ~ ~ iP+qJp(Xjl)Jq(xj2) 
- 7 r j = l  p q 

x[(1/2~r) fexp[i(p+2q)(O-O)]dO]dO,_= (7) 

(1/27r) f exp [i(p + 2q)(0-  0)]d0 
--'r/- 

where 

1, i f p = - 2 q  
= 0, if p r o - 2 q  (8) 

It follows that 

C((.Ol,O02) = (1/2~r) zi3qJ2q(Xjl)Jq(xj2) dO (9) 
j = l q  

~ (1/2"r/') .f / 2~'I4 [ R j  ((/) 1, (/)2, O ) 
--~- I . j= 1 

+ i/j(to,,tOz,0l]}d0, (10) 

where 

R:(w,,w2,0) = Jo(xjOJo(x:z) 
oo 

+ 2 ~'. ( - 1)mg4m(X:,)J2m(X:z) (11) 
m=l  

and 
oo 

/ j(t .OI,tO2,0) -" 2 ~'. ( - -  1)m+lJ4m+2(Xjl)g2m+l(Xj2 ). 
m=0 

(12) 

The Fourier coefficients are obtained in a manner 
similar to that presented by Shmueli & Weiss 
(1985a). If we make the replacements o91---rras and 
w2~ rrat and introduce the abbreviations 

R:st(O) = Rj(Tras, qrat, O), (13) 

l jst(  O) = I j (  qT"OgS,'lT"olt, O),  (14) 

the expression for the Fourier coefficient can be 
written 

Cs,= (1/Tr)f I-I [R:s,(O) + i/j~,(0)] dO (15) 
j = l  

= 3 st + i Js,, (16) 

where ~ s t  and i s ,  are the real and imaginary parts, 
respectively, of the integral on the right-hand side of 
(15). 

In our test calculations, we assume that there are 
only two kinds of atoms in the asymmetric subunit. 
There are ML equal light atoms and Mu equal heavy 
ones. The product in (15) then reduces to 

(RLst + iILs,)M'(RHst + ilHs,) M', (17) 

where ML + M/4 = N/4, a similar simplification being 
valid for the representation of C(to~,to2) given in (5). 

Equation (1) can now be computed directly. How- 
ever, this calculation is significantly simpler when 
symmetry properties of the real and imaginary parts 
of the Fourier coefficient are taken into account, 
with respect to changes in sign of s and t. A direct 
inspection of (11) and (12), with the appropriate 
replacements as made above, shows that Rjst(O) is 
invariant under the change of the signs of s or t or 
both, for any j and 0. Further,/is, is invariant with 
respect to a change in sign of s but changes its sign 
when t changes sign. The real and imaginary parts of 
the integrand in (15) have the same symmetry as that 
of R:s,(O) and Ijst(O) (C:  Shmueli & Weiss, 1985a) 
and the same is true for the integral in (15). We 
therefore have 

~ st = "~'s'  --  ~ S't = ""Q~'~7, (18) 

J~t = Js~ and Jsr  = - ~ , .  (19) 

Since the symmetry of the Fourier coefficients in the 
presence of noncrystallographic symmetry is the 
same as that in its absence, we can use the results of 
Shmueli & Weiss (1985a) by simply replacing Rs, and 
Ist of that reference with the present 3 s ,  and Jst, 
respectively. The final result for the probability that 
the sign of Eh is positive, given the magnitudes IE2hl 
and [Eh[, is therefore given by 

p+(Zhlh) = ½(1 + Ob/Fb), (20) 

where 
oo oo 

S2b= Z Z Js, cos(TrasEh)sin (TratlE2~[) (21) 
s = l t = l  

and 

Fb = ~ I 1 + 2 E 3 ~o[COS (7raSEh) + cos (~asE20] 
I. s=l 

} + 4  ~" Z3stCOS(TraSEh)COS(TratE2h). (22) 
s = l  t = l  

Equations (20), (21) and (22), with 3 st and ~¢'st given 
by (16) and (15) and based on (11) and (12), are the 
basis of numerical computations of the exact prob- 
ability for Z1 in the presence of noncrystallographic 
centrosymmetry in a P1 structure. 
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Examples and discussion 

The probability that the seminvariant E2h will be 
positive, given the magnitudes [E2h and lEd in addi- 
tion to a bicentric arrangement of the unit-cell con- 
tents, was evaluated for E2h[ fixed at 1.75, [Eh 
varying from 1.0 to 3.0 and two compositions of the 
asymmetric unit of space group PI: (i) C32 and (ii) 
C3oCd2. In the bicentric arrangement, this consists of 
two identical subunits. The probability computed for 
this arrangement is represented by dashed lines in 
Figs. 1 (a) and (b) and is referred to as the probability 
for the bicentric Y~l. The solid lines in these figures 
represent the corresponding exact probabilities for 
the Y-1 relationship for the same values of IEI and the 
same compositions but in the absence of noncrystall- 
ographic symmetry - computed from the results of 
Shmueli & Weiss (1985a). The latter is referred to as 
probability for the centric Y.l. 

The computation of the probability for the centric 
Y~ is rapid and straightforward since the coefficients 
of the relevant Fourier expansion are given by an 
expression equivalent to the integrand in (15) with 
= 0. The Fourier coefficients needed for the prob- 
ability for the bicentric Y a, on the other hand, 
require the evaluation of the angular integral in (15). 
This numerical integration converges slowly, especi- 
ally in the equal-atom case. The dashed lines in Fig. 
1 are a result of some smoothing of the computed 
bicentric Y l relation. 

While the present treatment is valid for an arbi- 
trary atomic heterogeneity, it appears interesting to 
find the expression for the probability of a bicentric 
Y.~ relationship for the equal-atom case. This is of 
probable importance in practical applications and 

1.0 

o o 1.o ~5 ~.0 ~.5 2.0 
IE(h)l 
(a) 

tO 

O.5 

O.0 
,.o ;.5 ~.o 

IE(h)l 
(b) 

2.5 3.0 

Fig. 1. The Y.l relationship in the presence and absence of noncrys- 
taUographic symmetry. The solid curves denote the probability 
for the positive sign of E2b in the absence of noncrystallographic 
symmetry (Shmueli & Weiss, 1985a) and the dashed curves refer 
to in its presence, as derived in the text. The magnitude lEvi is 
fixed at 1.75. Composition of the asymmetric unit: (a) C32, 
(b) C30Cd 2. 

would bring out more clearly the dependence of the 
probability on the number of atoms in the unit cell. 

This investigation of the effect of noncrystallogra- 
phic symmetry on exact multivariate crystallographic 
statistics indicates that, in the important equal-atom 
case, the presence of a bicentric arrangement signifi- 
cantly decreases the probability that the sign of the 
structure seminvariant EEh is positive. Such a 
decrease also occurs as a result of a heterogeneous 
composition [Fig. l(b)] but the effect is practically 
absent when the magnitude of Eh is sufficiently large. 

It was recalled by one of the referees that struc- 
tures with more than one molecule in the asymmetric 
unit are more difficult to solve by direct methods 
than they should be. This may indeed have to do 
with the decreased probability of sign/phase rela- 
tionships, associated with noncrystallographic sym- 
metry. Of course, the bicentric arrangement is only 
one such unfavorable situation. 

The present calculations were planned so that an 
exact probability for the Y.i relationship should be 
evaluated for a partially bicentric arrangement 
(Shmueli & Weiss, 1985b). This is a situation - not 
unfrequently encountered in real crystals - where the 
asymmetric unit of PT contains a large centrosynune- 
tric fragment and some atoms not related by the 
non-crystallographic center. The Fourier coefficient 
can then be obtained as a product of centric and 
bicentric contributions. It will be of interest to exam- 
ine this situation when more extensive calculations of 
effects of noncrystallographic symmetry are under- 
taken. 

We wish to thank the referees of this paper for 
their thoughtful comments. We are also grateful to 
James Kiefer and Richard Shrager of our Labora- 
tory for help and advice in programming problems. 
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